Stochastic Local Search Algorithms for DNA Word Design

نویسندگان

  • Dan C. Tulpan
  • Holger H. Hoos
  • Anne Condon
چکیده

We present results on the performance of a stochastic local search algorithm for the design of DNA codes, namely sets of equallength words over the nucleotides alphabet {A,C,G, T} that satisfy certain combinatorial constraints. Using empirical analysis of the algorithm, we gain insight on good design principles. We report several cases in which our algorithm finds word sets that match or exceed the best previously known constructions.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Development of an Efficient Hybrid Method for Motif Discovery in DNA Sequences

This work presents a hybrid method for motif discovery in DNA sequences. The proposed method called SPSO-Lk, borrows the concept of Chebyshev polynomials and uses the stochastic local search to improve the performance of the basic PSO algorithm as a motif finder. The Chebyshev polynomial concept encourages us to use a linear combination of previously discovered velocities beyond that proposed b...

متن کامل

Hybrid Randomised Neighbourhoods Improve Stochastic Local Search for DNA Code Design

Sets of DNA strands that satisfy combinatorial constraints play an important role in various approaches to biomolecular computation, nanostructure design, and molecular tagging. The problem of designing such sets of DNA strands, also known as the DNA code design problem, appears to be computationally hard. In this paper, we show how a recently proposed stochastic local search algorithm for DNA ...

متن کامل

Solving a Stochastic Cellular Manufacturing Model by Using Genetic Algorithms

This paper presents a mathematical model for designing cellular manufacturing systems (CMSs) solved by genetic algorithms. This model assumes a dynamic production, a stochastic demand, routing flexibility, and machine flexibility. CMS is an application of group technology (GT) for clustering parts and machines by means of their operational and / or apparent form similarity in different aspects ...

متن کامل

Training Radial Basis Function Neural Network using Stochastic Fractal Search Algorithm to Classify Sonar Dataset

Radial Basis Function Neural Networks (RBF NNs) are one of the most applicable NNs in the classification of real targets. Despite the use of recursive methods and gradient descent for training RBF NNs, classification improper accuracy, failing to local minimum and low-convergence speed are defects of this type of network. In order to overcome these defects, heuristic and meta-heuristic algorith...

متن کامل

Effective Heuristic Methods for DNA Strand Design

Sets of DNA strands that satisfy combinatorial and thermodynamic properties play an important role in various approaches to biomolecular computations, nano structure design, molecular tagging, and DNA microarrays. The problem of designing such sets of DNA strands appears to be computationally hard. This thesis introduces new algorithms for design of DNA strand sets that satisfy any of several c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002